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INTRODUCTION

The objective of the present research is to develop a general mathemati-
cal model and solution methodologies for analyzing structural response of
thin, metallic shell-type structures under large transient, cyclic or static
thermomechanical loads. Among the system responses, which are associated
with these load conditions, are thermal buckling, creep buckling and ratchet-
ting. Thus, geometric as well as material-type nonlinearities (of high
order) can be anticipated and must be considered in the development of the
mathematical model. Furthermore, this must also be accommodated in the
solution procedures.

SUMMARY OF PROGRESS
The progress update has been elaborated upon in an interim scientific

report submitted to the sponsor during the summer of 1986. A second report,
describing the developed finite element, the computer code, and several
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applications to cylindrical and spherical shell configurations, is being
prepared. It is expected that this second scientific report will be sub-
mitted to the sponsor during the summer of 1987.

A complete true ab-inito rate theory of kinematics and kinetics for
continuum and curved thin structures, without any restriction on the magni-
tude of the strains or the deformation, was formulated. The time dependence
and large strain behavior are incorporated through the introduction of the
time rates of the metric and curvature in two coordinate systems; a fixed
(spatial) one and a convected (material) coordinate system. The relations
between the time derivative and the covariant derivative (gradient) have been
developed for curved space and motion, so that the velocity components supply
the connection between the equations of motion and the time rate of change of
the metric and curvature tensors.

The metric tensor (time rate of change) in the convected material
coordinate system is linearly decomposed into elastic and plastic parts. In
this formulation, a yield function is assumed, which is dependent on the rate
of change of stress, metric, temperature, and a set of internal variables.
Moreover, a hypoelastic law was chosen to describe the thermoelastic part of
the deformation.

A time and temperature dependent viscoplastic model was formulated in
this convected material system to account for finite strains and rotations.
The history and temperature dependence were incorporated through the intro-
duction of internal variables. The choice of these variables, as well as
their evolution, was motivated by phenomenological thermodynamic considera-
tions.

The nonisothermal elastic-viscoplastic deformation process was described
completely by "thermodynamic state" equations. Most investigators (in the
area of viscoplasticity) employ plastic strains as state variables. Our
study shows that, in general, use of plastic strains as state variables may
lead to inconsistencies with regard to thermodynamic considerations.
Furthermore, the approach and formulation employed by all previous investiga-
tors lead to the condition that all plastic work is completely dissipated.
This, however, is in contradiction with experimental evidence, from which it
emerges that part of the plastic work is used for producing residual stresses
in the lattice, which, when phenomenologically considered, causes hardening.



Both 1imitations are not present in our formulation, because of the inclusion
of the "thermodynamic state" equations.

The obtained complete rate field equations consist of the principles of
the rate of the virtual power and the rate of conservation of energy, of the
constitutive relations, and of boundary and 1initial conditions. These
formulations provide a sound basis for the formulation of the adopted finite
element solution procedures.

One of the most challenging aspects of finite strain formulations is to
locate analytical solutions with which to compare the proposed formulation.
Typically, as a first problem, a large strain uniaxial test case was ana-
lyzed. The case considered examines the rate-dependent plastic response of a
bar to a deformation history that includes segments of loading, unloading,
and reloading, each occurring at varying strain and temperature rates.
Moreover, it was shown thafr%roposed formulation generates no strain energy
under a pure rigid body rotation. These are surely important demonstrations
but they only represent a partial test because the principal stretch direc-
tions remain constant. Finally, a problem which was discussed by Nagtegaal
and de Jong, and others too, as a problem which demonstrates limitations of
the consitutive models 1in many strain formulations, is the Couette flow
problem. This problem is solved as a third example. The results of these
test problems show that:

- The formulation can accommodate very large strains and rotations.

- The formulation does not display the oscillatory behavior in the
streses of the Couette flow problem.

- The model incorporates the simplifications associated with rate-
insensitive elastic response without losing the ability to model
rate temperature dependent yield strength and plasticity.

The problem of buckling of shallow arches under transient thermomechani-

cal load was investigated next.

The quasi-linear nature of the principle of the rate of virtual power
suggests the adoption of an incremental approach to numerical integration
with respect to time. The availability of the field formulation provides
assurance of the completeness of the incremental equations and allows the use
of any convenient procedure for spatial integration over the domain V. In
the present instance, the choice has been made in favor of a simple first




order expansion in time for the construction of incremental solutions from
the results of finite element spatial integration of the governing equations.

The procedure employed permits the rates of the field formulation to be
interpreted as increments in the numerical solution. This is particularly
convenient for the construction of incremental boundary condition histories.

Even under the condition of static external loads and slowly growing
creep effects, the presence of snap-through buckling makes the 1inertia
effects significant. In dynamic analyses, the applied body forces include
inertia forces. Assuming that the mass of the body considered is preserved,
the mass matrix can be evaluated prior to the time integration using the
initial configuration.

Finite element solution of any boundary-value problem involves the
solution of the equilibrium equations (global) together with the constitutive
equations (local). Both sets of equations are solved sinultaneously in a
step by step manner. The incremental form of the global and local eguations
can be achieved by taking the integration over the incremental time step
At=tj+1-tj.
time integration.

The rectangular rule has been applied to execute the resulting

Clearly, the numerical solution involves iteration. A simplified
version of the Riks-Wempner constant-arc-length method has been utilized.
This 1iteration procedure which 1is a generalization of the displacement
control method also allows to trace the nonlinear response beyond bifurcation
points. In contrast to the conventional Newton-Raphson techniques, the
jteration of the method takes place in the velocity and load rate space. The
load step of the first solution in each increment is limited by controlling
the length ds of the tangent. Either the length is kept constant in each
step or it is adapted to the characteristics of the solution. In each step
the triangular-sized stiffness matrix has to be checked for negative diagonal
terms, indicating that a critical point is reached.

The analysis was performed with the aid of 24 paralinear isoparametric
elements. The paralinear isoparametric element is intended for the analysis
of oriented structures where the geometry is such that the thickness is small
compared to other dimensions. The characteristics of the element are defined
by the geometry and interpolation functions, which are linear in the thick-
ness direction and parabolic in the longitudinal direction. Consequently,



the element allows for shear strain energy since normals to a mid-surface
before deformation remain straight, but not necessarily normal to the mid-
surface after deformation.

The developed solution scheme is capable of predicting response which
includes pre- and post-buckling with thermal creep and plastic effects. The
solution procedure was demonstrated through several examples which include
both creep and snap-through behavior,

The last set of problems which are under investigation consists of creep
or thermal buckling with plastic effects of shells of revolution.

To develop geometrically nonlinear, doubly-curved finite shell elements
the basic equations of nonlinear shell theories have to be transferred into
the finite element model. As these equations are in general written in
tensor notation, their implementation into the finite element matrix formula-
tion requires considerable effort.

The nonlinear element matrices were derived directly from the incremen-
tally formulated nonlinear shell equations, by using a tensor-oriented
procedure. A modified version of the classical thin shell theory based on
the Kirchoff-Love hypotheses, capable of 1large strains and rotations, is
presently employed. For this formulation, we are using five "natural"
degrees of freedom per mid-surface shell node: three incremental velocities

1 and a2.

and two rates of rotations about the material coordinates a

This element was introduced to the solution procedure described earlier.
Few examples of creep and thermal buckling of a cylindrical panel and spher-
jcal cap are currently under investigation.

In connection with the progress to date, two papers were published in
the AIAA Journal and one in the "NASA-U. of Akron Sponsored Meeting" Pro-
ceedings. Copies of these papers have been mailed to the sponsor. Moreover,
two papers appeared in the Proceedings of the 28th AIAA/ASME/ASCE/AHS SDM

Conference. Copies of these two papers are attached herewith.

FUTURE TASKS
With regard to additional future tasks, one must include the development
of a finite element accommodating the more general shell theory formulations
(A,B, & C), and the incorporation of this into a code. Moreover, three-
dimensional effects, especially those associated with normal stresses, will



be incorporated, either through modification of the developed shell theory or
through local-global finite element procedures in which the local part will
be based on three-dimensional analysis.

Finally, another important extension is to replace the material consti-
tution (initially homogeneous and isotropic-metal) by a more general one that
allows the analysis of layered fiber-reinforced composites.
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Abstract

A recently developed differential methodology for solution
of one-dimensional nonlinear viscoelastic problems is presented.
Using the example of an eccentrically loaded cantilever beam-
column, the results from the differential formulation are com-
pared to results generated using a previously published integral
solution technique. It is shown that the resuits obtained from
these distinct methodologies exhibit a surprising high degree of
correlation with one another. A discussion of the various factors
affecting the numerical accuracy and rate of convergence of these
two procedures is also included. Finally, the influences of some
“higher order” effects, such as straining along the centroidal axis

are discussed.

I. Introduction

A number of methods are available to solve viscoelastic
problems in which the behavior of the material may be ade-
quately characterized by a linear viscoelastic operator and where
the deformation of the body is sufficiently small to allow the
use of a linear kinematic formulation [1,2]. Commonly, integral
transform methods, separation of variables, series expansions
or other such techniques provide methodologies wherein exact
closed form solutions may be derived. When exact solutions
cannot be obtained, approximate techniques, such as one pro-
posed by Schapery [3], may provide an alternate approach.

The inclusion of nonlinear effects in the analysis signif-
icantly reduces the mathematical tractability of the problem.
These nonlinear influences can be induced by geometric factors
resulting from the magnitude of the deformation or from gross
rotation of cross sections. Alternatively, nonlinearities in the
material response may need be included to provide an accurate

model for material behavior.
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Independent of whether these nonlinearities are produced
by geometric or material effects, they invariably result in an
overall formulation governed by nonlinear equations. Thus, the
solution methods mentioned above, applicable to linear prob-
lems, cannot be employed. As such, approximate solution meth-
ods have been developed and are routinely employed to analyze
such problems [4]. '

One of these methods is to idealize the problem is such a
manner so as to generate inherent simplifications to the govern-
ing relations. A classical example of this technique was the uti-
lization of an ideal “I” cross sectional geometry in early column
creep buckling studies [5]. With this approximation, the equa.
tions governing equilibrium of the column were reduced to much
simpler forms involving the “average” stresses in the flanges of
the ideal beam-column. .

Another approach used extensively was to restrict consid-
erations to only certain types of time dependent material be-
havior [6]. In some cases, this involved retaining only secondary
creep behavior in the material model. Alternatively, and es-
pecially when “power law” type constitutve laws were used,
the constants or exponents of the law were restricted to spe.
cial values for which closed form solution was possible [7]. In
a few cases, this simplification of the material model, as well
as the aforementioned geometric simplification technique, were
employed simultaneously to enable solution. A survey of most
of these methods has been provided by Hoff (8.

An exact numerical solution technique for geometrically
nonlinear viscoelastic problems has been presented by Rogers
and Lee [9]. A recent paper by the authors [10] provides a
method for bounding the solution for such problems. In both
of these techniques, the solution to the problem is formulated
in terms of an integral equation which is nonlinear with re-
spect to both time and space. From this, solutions may then
be readily obtained using relatively standard numerical tech-
niques. Generally, both the exact and bounding technique can
be employed for problems wherein the response of the mate-
rial may be adequately characterized using a linear viscoelastic
model, but where the resuiting time dependent deformation of

the body warrants the use of a nonlinear kinematic formulation.




Since the integral solution technique can be applied only
when the response of the material either is or may be reason-
ably approximated as being linear, problems involving nonlinear
viscoelastic material behavior cannot be addressed using these
methods. Unfortunately, many materials, and especially the ele-
vated temperature behavior of most metals, require such nonlin-
ear characterizations. Consequently, an alternate solution proce-
dure for one-dimensional problems involving nonlinear kinematic
and nonlinear material effects has been developed. This method,
hereinafter referred to as the differential formulation, is based
on the direct solution of the nonlinear differential equations of
equilibrium.

Similar to the integral method, the overall procedure is
predicated on the assumption of a quasistatic response. This

assumption effectively “decouples” the temporal and spatial de-

pendence of the problem in such a manner so as to allow the

general solution to be treated as the combination of the solu-
tions to a nonlincar “houndary value” problem and a nonlinear
~initial value™ problem. The first of these, the equations char-
acterizing the time dependent states of quasistatic equilibrium,
are solved through the use of a Newton type method [11]. In
contrast, the “initial value” problem, resulting from the non-
linear constitutive law, governs the manner by which the body
progresses from one state of quasistatic equilibrium to the suc-
ceeding one. Numerical solutions for this part of the problem are
generated using a fourth order Runge-Kutta method. Using this
technique. problems involving the nonlinear thermoviscoelastic
hehavior of thin structural members have recently been exam-
ined 12,

In addition to presenting the differential formulation tech-

nique. a comparison of results obtained through the use of the

integral and differential formulations is provided. The problem
of an eccentrically loaded viscoelastic cantilever beam-column is
emploved as the vehicle through which the comparison is per-
formed. Because of the inherent limitation of the integral tech-
nique. this comparison is restricted to the consideration of a
linear viscoelastic material. The specific case considered is that
of the three parameter viscoelastic solid which has been exam-
ined in a number of studies [10,13,14]. The results obtained
from these.two distinct methods of solution exhibit a surpris-
ingly high degree of correlation with one another thereby estab-
lishing a high level of confidence in the validity of the methods.
Finally. the differential formulation is employed to examine the
influences of some of the “higher order™ effects for the class of

problems under consideration.

II. Integral Formulation

Since the integral solution is available in literature [9,10],

only a brief outline of its development is presented herein. The
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solution is based on the assumption that the beam-column is
thin and composed of a linearly viscoelastic material. Its ge-
omerty in the deformed configuration is illustrated in Fig. 1.
Note that the eccentric load is assumed to be applied quasi-
statically and its directian does not vary with time.

Reference line extensional strains are assumed to be neg-
ligibly small. Thus the coordinate s' is employed to specify po-
sition in both the initial and deformed configurations. A nondi-
mensional coordinate, s, is defined by dividing s' by the length
of the beam, L. Assuming a linear distribution of the strains
through the depth, bending thus occuring within a Bernoulli-
Euler context, results in a moment-curvature relationship given
by

M(s', r)]d 0

K(sht) = (3 )/ st - [ 2L

where x({s',t) denotes the curvature and M(s',7) the bending

moment at location s'. J is the moment of inertia of the beam
and J(t) the creep compliance of the material. For the eccentric

load, R(t), the moment at position s’ is given by

M(s',t) = R(r)[6(7) + acos a(7) -

y(s'y7)] (2)

Figure 1. Beam-Column Geometry for Integral Formulation

From kinematic considerations, it is noted that

"("'")’:Q?'(a':’jt—)
a’f;,’” cos §(s',1) )
8____y( s )—sm¢>(a 1)

The boundary condmons for the problem are

$(0,¢) = 0
M(I Y= aR(t)cos ¢(L,1)
where a(t) = ¢(L,t) for a “rigid” extension.
Substituting Egns. (2) and (3) into Eqn. (1) followed by
differentiation with respect to s yields the governing differen-

(4)

tial equation. Using the methodology detailed in [9}]. it can be
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shown that, for quiescent initial conditions, the solution for this

equation is given by

» .
sty = () @RS, + [ Tt - DIRmIOG T 7]
o)

where

1
@(s,f):(%‘-)cosé(l,t)«c-/ g(s,u)sing(s,t)du  (6)
[}

and

g(syu)=u, 0<ugs

0]
=3, s<u<l

and where the prime, ('), in Eqn. (5) denotes differentiation
with respect to the argument of the function.

Note that Egn. (5) represents a time convolution of a non-
linear Fredholm type integral equation, Eqn. (6). Numerical so-
lutions for this set of equations are accomplished using Picard’s
method of successive substitutions {15]. The spatial integrals
are approximated using Newton-Coates formulae; a fixed step

trapezoidal rule is used for the time convolution.

111. Differential Formulation .

Similar to the integral formulation, the differential formu-
lation for this problem is based on the assumption that bending
of the beam occurs in accordance with the Euler-Bernoulli hy-
potheses. The functions u(s,t) and w(s,t) are employed to de-
note, respectively, the axial and transverse deflection of points
on the centroidal axis. From this, the extensional strain along
the centroidal axis, ¢,, is approximately given by

wx Py (8)
Note that the term }(2¢)? has been neglected as small in com-
parison to 2% If, in addition, both the strain at the centroidal
axis and £! are small in comparison to 1 then it is relatively

simple to show that
9¢ dwdu Jw
ds = 9s 9s?  9s*’
Thus, for a linear variation of strain through the cross section,
this yields

(9)

d
€11 =€, + 775? (10)

Employing the Principle of Virtual Work followed by inte-
grating by parts and then manipulating algebraically eventually

yields the equilibrium equations
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N= —F(l + %E + %(acosé([) + w(s) - w([))) (1la)

and

M= F(acos (L) + w(s) - w(L)) (116}

where N and M, the force and moment resultants, respectively.

are defined as

N=/U“d.4 and Iﬂ=/f)0“d.4. (l?a.b)
A A

Based upon an additive decomposition for total strain. e.
such that ¢ = ¢, + ¢ where ¢, and ¢, represent the elastic and
creep strain components, respectively, vields, after substitution
into Eqns. (11) and (12),

Ou 0¢ e . : (12
Ede, = _F(1+5;+5;(acos:.*»(L)ﬂ(s)-“qz)))-.\c (13a)
and
8¢ ) ,
E]-a—s- = F(acos o(L) + w(s) — w(L)) ~ M, (13b)

where A represents the area of the cross section. / denotes its
moment of inertia and the “pseudo-resultants™ N, and M, are
defined by

N,:/Eech and ‘.\l,:/r)Ee,.d.—l {14a.b).
A A

Nunerical solutions for Eqns. {14) are computed using a
modified Newton type method suggested by Thurston 15. To
illustrate this method consider a nonlinear differential term of
the form du™dw" where du and dw are differentials of the func-
tions u and w and m and n represent integer exponents. Assum.-
ing that close trial solutions % and @ are availahle which differ
from the exact solution hy the small quantities Aw and Au so

that u = @ + Au and w = & + Aw, then

du™ dw" =dia™ d%" + mdi™ ! dw" d(Au)
(13)
+ ndia™ dw" " d(Aw) + f(8.%)0{Au. Aw]

where f({) denotes a nonlinear function of i and % and O’
indicates terms of order AuAw and higher. If the trial solution
is indeed close to the true solution, then the corrections. Au
and Aw, will be small. Consequently, the quadratic and higher
order terms in the corrections will be negli~i' le in comparison

to the linear terms and therefore may be neglected. Thus, under

- these conditions, the right-hand side of Eqn. {15) may be closely
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approximated by the linearized form consisting of just the first

three terms on the right-hand side.




With this type of procedure, the original nonlinear differ-
ential equation is incrementally approximated by a linearized
form. Employing standard finite-difference formulae, the lin-
earized form is then converted into a system of a..lgebraic equa-
tions where the unknowns are the corrections to the trial solution
at the nodes of the finite difference mesh. These relations are
solved for these corrections, the trial solution is adjusted and
the process repeated until convergence is obtained.

Numerical solution of Eqns. (13) also requires evaluation
of the “pseudo-resultants” N, and M, at each point of the finite-
difference mesh. This is accomplished by evaluating the accu-

mulated creep strain at select number of points across the cross

. section and then using a three point Newton-Coates quadrature

formula repetitively to approximate the area integral. Evalua-

tiocn of the accumulated creep strain at each of these points is

accomplished through the use of a fourth order Runge-Kutta in- A

tegration routine to integrate the constitutive law expressed in

a differential format.

1V. Example Problem

The specific example considered is that of a 12 in. long
beam-column. For simplicity, a square cross section of dimension
0.5 in. has been assumed. It is also assumed that the heam-
column is fabricated from a material which can be modeled as
a three parameter viscoelastic solid. The creep compliance for

this model. illustrated in Fig. 2, is given by

J(1)/J(0) = 1 + [Ea/E ]e™/™ (16)

where 7, = n; /E;. For these computations, the numerical values
for the parameters have been selected so that 7, = 1. Thus,
integer values for time equal multiples of the time constant of

the material.

E

E,

=
n

Figure 2. Ideal Three Element “Limited” Creep Model.

A five point grid in the transverse direction is used for
computation of the “pseudo-resultants” in the differential for-
mulation. The points are equidistantly spaced with the first
and last Jocated at the extreme fibers and the central point po-
sitioned on the centroidal axis.

Since the solutions of both the differential and integral for-
mulations are only satisfied at a discrete number of points over
the length of the beam-column, the first question that must be
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addressed is how sensitive the resuits are to the number of points
used in the approximation. Table 1 provides a comparison of the
variation of the results from the differential formulation for the
initial elastic deflection of the beam-column as the number of ap-
proximating points is doubled from 10 to 20 and then doubled
again to 40 for an eccentricity ratio of 0.05 and an applied load

Table 1. Differential Elastic Solution Versus Number
of Nodes for P/P, = 0.75 and a/L = 0.05

Transverse Defiection for Various Numbers of Elements (in)

Number of Elements

s=4'/L 40 20 % Diff
0.0 0.000000 0.000000
0.1 0.024673. 0.024705 0.130
0.2 0.098189 0.098307 0.120
0.3 0.219074 0.219332 0.118
0.4 0.384931 0.385376 0.116
0.5 0.592512 0.593187 0.114
0.6 0.837815 0.838755 0.112
0.7 1.116191 1.117426 0.111
0.8 1.422456 1.424007 0.109
0.9 1.750997 1.752879 0.107
1.0 2.095877 2.098098 0.106

s=¢[L 40 10 % Diff
0.0 0.000000 0.000000
0.1 0.024673 0.024809 0.551
0.2 0.098189 0.098763 0.585
0.3 0.219074 0.220289 0.555
0.4 0.384931 0.387110 0.566
0.5 0.592512 0.595755 0.547
0.6 0.837815 0.842435 0.551
0.7 1.116191 1.122177 0.536
0.8 1.422456 1.430090 0.537
0.9 1.750997 1.760165 0.524
1.0 2.095877 2.106817 0.522

(% differences are with respect to 40 element solution)

of P/P, = 0.75. The Euler load, P,, here is based on a perfect
geometry and use of the instantaneous compliance of the mate-
rial, J(0). Table 2 provides a similar comparison for the same
loading and eccentricity ratio but for the integral formulation.
From these two Tables it can be seen that there is very lit-
tle change in the computed transverse deflection as the number
of approximating points is increased. In both cases, the initial
elastic solution of the ten element model is within 1.0 % of the 40
element model results. Additionally, the relative magnitude of
the errors between the 10 and 40 element models of the differ-
ential formulation are virtually identical to those exhibited by
the integral solution methodology. Although not specifically in-
dicated on these Tables, it should also be noted that the angles
of rotation are not always small. For example, at this load and
eccentricity, the initial elastic end rotation of the beam-column
exceeds 17 deg. Of course, smaller rotations are exhibited at the

lower loads and lower eccentricities.
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Table 2. Integral Elastic Solution Versus Number
~ of Nodes for P/P, = 0.75 and o/L = 0.05

Transverse Deflection for Various Numbers of Elements (in)

Number of Elements

s=¢/L 40 20 % Diff
0.0 0.000000 0.000000
0.1 0.024616 0.024652 0.146
0.2 0.097967 0.098125 0.161
0.3 0.218586 0.218890 0.139
0.4 0.384079 0.384691 0.159
0.5 0.591200 0.592089 0.150
0.6 0.835951 0.837267 0.157
0.7 1.113686 1.115374 0.152
0.8 1.419227 1.421422 0.155
0.9 . 1.746972 1.749594 0.150
1.0 2.091003 2.094171 0.152

s=s/L 40 10 % Diff
0.0 0.000000 0.000000
0.1 0.024616 0.024781 0.670
0.2 0.097967 0.098753 0.802
0.3 0.218586 0.220123 0.703
0.4 0.384079 0.386547 0.643
0.5 0.591200 0.595443 0.718
0.6 0.835951 0.841727 0.691
0.7 1.113686 1.120936 0.651
0.8 1.419227 1.429034 0.691
0.9 1.746972 1.758422 0.655
1.0 2.091003 2.105685 0.702

(% differences are with respect to 40 element solution)

Therefore, it is concluded that both formulations exhibit
the same low level of sensitivity to the number of elements used
in the analysis. Concurrently, these results also indicate that
a 10 element model can be used with either method without
generating significant errors in the analysis. It should be noted
that all of the differential formulation resuits presented above
are based on the use of an exact expression for evaluating the
angle of rotation.

A direct comparison between the results generated by the
two formulations is provided in Tables 3 and 4. Again, the com-
parison is based on the 0.50 eccentricity ratio which inherently
produces larger angles of rotation. The angle of rotation of the
cross section, determined from the integral technique, are also
provided.

Table 3 is based on the use of an exact expression for
evaluation of sin ¢ in the solution of the differential methodol-
ogy. The “approximate” sin ¢ results, provided in Table 4, on
the other hand, are based on use of the common approxima-
tion sin ¢ = —9w/ds, to calculate the angle of rotation. Note
that, other than this particular change, these two differential
formulations are, otherwise, completely identical. Both include
the influences of axial as well as transverse deflection on the be-
havior of the beam-column. The influence of deleting the axia.l
deformation on the accuracy of the predicted results is discussed
later.

Table 3. Integral and Differential ( £) Elastic
Solutions for Various Loads a/L = 0.05

Transverse Deflection from Various Solutions (in)

Exact
sin ¢ Angle
s=s'/L Integral a/6t % Diff (deg)
for P/P, = 0.25
0.0 0.000000  0.000000 0.00
0.1 0.002615 0.002616 0.04 0.25
0.2 0.010450  0.010448 -0.02 0.50
0.3 0.023444  0.023445 0.00 0.74
0.4 0.041520  0.041531 0.03 0.98
0.5 0.064590  0.064589 0.00 1.22
0.6 0.092475  0.092483 0.01 1.44
0.7 0.125010  0.125031 0.02 1.66
0.8 0.162039- 0.162044 0.00 1.87
0.9 0.203256  0.203279 0.01 2.07
1.0 0.248513  0.248497 -0.01 2.25
for P/P, = 0.50
0.0 0.000000  0.000000 0.00
0.1 0.008283  0.008285 0.02 0.79
0.2 0.033056  0.033044 -0.04 1.57
0.3 0.073940 0.073948 0.01 2.33
0.4 0.130441  0.130516 0.06 3.07
0.5 0.202009  0.201999 0.00 3.76
0.6 0.287513  0.287559 0.02 1.40
0.7 0.385945  0.386070 0.03 5.01
0.8 0.496357  0.496382 0.01 3.52
0.9 0.616919  0.617049 0.02 6.01
1.0 0.746772 0.746670 -0.01 6.38
for P/P, = 0.75
0.0 0.000000  0.000000 0.00
0.1 0.024781  0.024809 0.11 2.37
0.2 0.098753  0.098763 0.01 1.68
0.3 0.220123  0.220289 0.08 6.91
0.4 0.386547  0.387110 0.15 9.03
0.5 0.595443  0.595755 0.05 10.97
0.6 0.841727  0.842435 0.08 12.6%
0.7 1.120936  1.122177 0.11 14.23
0.8 1.429034  1.430090 0.07 15.41
0.9 1.758422  1.760165 0.10 16.44
1.0 2.105685  2.106817 0.05 17.04
(% differences are with respect to integral solution}
(comparisons based on results from 10 element modeis)

As the data of these Tables indicate, there are no signifi-
cant differences in predicted transverse deflections. Even for an
end rotation angle of 17 deg, the differences between the various
results is well below that required in engineering computations.
It should be noted that this high level of correlation continues
to exist for even greater angles of rotation. The reason why
this high correlation exists is that, under compressive loading.
the derivative of the axial displacement is negative. Since. the
square of the slope of the transverse deflection is always positive,
these algebraically combine so that the sum is lower in magni-

tude than either of the individual terms. This serves to reduce

the magnitude of the centroidal axis strain. Because the differ-
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Table 4. Integral and Differential () Elastic
Solutions for Various Loads a/L = 0.05

“. Transverse Deflection from Various Solutions (in)

Approx.
sin ¢ Angle

s=4¢'L Integral a/ot % Diff (deg)
for P/P, = 0.25
0.0 0.000000  0.000000 0.00
0.1 0.002615  0.002616 0.00 0.25
0.2 0.010450  0.010448 -0.02 0.50
Q.3 0.023444  0.023445 0.00 0.74
0.4 0.041520  0.041531 0.03 0.98
0.5 0.064590  0.064589 0.00 1.22
0.6 0.092475  0.092483 0.01 144
0.7 0.125010  0.125031 0.02 1.66
0.5 0.162039  0.162044 0.00 1.87
0.9 0.203256  0.203279 0.01 207
1.0 © 0.248513  0.248497 -0.01 2.25

for P/P, = 0.50

0.0 0.000000  0.000000 : 0.00
0.1 0.008283  0.008286 0.04 0.79
0.2 0.033056  0.033044 -0.04 1.57
0.3 0.073940  0.073949 0.01 2.33
0.4 0.130441  0.130516 0.06 3.07
0.5 0.202009  0.202000 0.00 3.76
0.6 0.287513  0.287560 0.02 4.40
0.7 0.385945  0.386071 0.03 5.01
0.& 0.496357  0.496383 0.01 5.52
0.9 0.616919  0.617050 0.02 6.01
1.0 0.746772  0.746672 -0.01 6.38
for P/P. = 0.75 .
0.0 0.000000  0.000000 . 0.00
0.1 0.024781  0.024810 0.12 237
0.2 0.098733  0.098767 0.01 4.68
0.3 0.220123  0.220299 0.08 6.91
0.4 0.386547  0.387128 0.15 9.03
0.5 0.595443  0.595782 0.06 10.97
0.6 0.841727  0.842473 0.09 12.68
0.7 1.120936  1.122228 0.12 14.23
0.8 1.429034  1.430155 0.08 15.41
0.9 1.758422  1.760244 0.10 16.44
1.0 2.105685  2.106911 0.06 17.04

i*; differences are with respect to integral solution)
{comparisons based on results from 10 element’models)

ence hetween the exact and approximate expressions for sin ¢ is
related to the /T + 2¢, in the denominator of the exact expres-
sion. reducing the magnitude of the centroidal strain inherently
improves tte accuracy of the approximation.

This influence is best illustrated by the data of Table 5.
Here. the integral solution is compared to an approximate solu-
tion for which the effect of the centroidal axis strain terms has
heen suppressed. This was accomplished by first eliminating
&' the (Ow/8s)? terms from the governing equations. The EA
niodulus-area product was then artificially increased through
multiplication by a factor of 1000. This second change reduces
the magnitude of the axial deflection by approximately the same

factor.

The net result of these changes is to create a differen-
tial model where the centroidal axis effectively is inextensional.
While it might be anticipated that this would improve the cor-
relation between the differential and integral results, such is not
the case. When the angle of rotation is very small, as those

which result from a low level of loading and a small eccentricity,

all the formulations provide virtually identical predictions. How-

Table 5. Integral and Modified Differential (%)
Elastic Solutions for Various Loads a/L = 0.05

Transverse Deflection from Various Solutions (in)
Modified
(w/o¢,) Angle
s=s'[L Integral o/ot % Diff (deg)

for P/P, = 0.25

0.0 0.000000  0.000000 0.00
0.1 0.002615  0.002616 0.00 0.25
0.2 0.010450  0.010446 -0.04 0.50
0.3 0.023444  0.023444 0.00 0.74
0.4 0.041520  0.041527 0.02 0.98
0.5 0.064590  0.064586 -0.01 1.22
0.6 0.092475  0.092478 0.00 1.44
0.7 0.125010  0.125030 0.02 1.66
0.8 0.162039  0.162043 0.00 1.87
0.9 0.203256  0.203287 0.02 2.07
1.0 0.248513  0.248508 0.00 2.25
for P/P, = 0.50
0.0 0.000000  0.000000 0.00
0.1 0.008283  0.008294 0.13 0.79
0.2 0.033056  0.033073 0.05 1.57
0.3 0.073940  0.074032 0.12 2.33
0.4 0.130441  0.130665 0.17 3.07
0.5 0.202009  0.202274 0.13 3.76
0.6 0.287513  0.287975 0.16 4.40
0.7 0.385945  0.386711 0.20 5.01
0.8 0.496357  0.497264 0.18 5.52
0.9 0.616919  0.618270 0.22 6.01
1.0 0.746772  0.748235 0.20 6.38
for P/P, = 0.75

0.0 0.000000  9.000000 0.00
0.1 0.024781  0.025543 3.07 2.37
0.2 0.098753  0.101698 2.98 4.68

0.3 0.220123  0.227057 3.15 6.91

0.4 0.386547  0.399299 3.30 9.03

0.5 0.595443  0.615237 3.32 10.97

0.6 0.841727  (.870876 3.46 12.68
0.7 1.120936  1.161483 3.62 14.23
0.8 1.429034  1.481683 3.68 15.41

0.9 1.758422  1.825548 3.82 16.44
1.0 2.105685  2.186716 3.85 17.04

(% differences are with respect to integral solution)
(comparisons based on results from 10 element models)

ever, as the angle of rotation increases, as those which occur at
the higher loadings and the greater load eccentricity, the mod-
ified differential formulation predictions begin to diverge from
those of the other two. The difference between the predicted
results is most notable for the highest load and largest load ec-
centricity example.
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This behavior results from the way the end of the beam-
column deflects. In the modified model, the end of the beam-
column basically moves only in the vertical direction (see Fig. 1).
The standard model, however, allows the end to move both ver-
tically and horizontally. Thus, for a given vertical deﬂectioh. the
leftward movement predicted by the standard model increases
the angle of rotation. This reduces the moment by reducing the
moment arm. Thus, to support a given load, the standard for-
mulation beam-column model need not deflect as much as the
modified model must. .

Comparisons of the viscoelastic predictions provided by
the integral and the exact differential are provided in Table 6.
A comparison with the approximate sin¢ differential solution
is not included because the differences between the exact and
approximate results again are so small as to be negligible. These
computations are based on the use of an ideal three element
“limited” material model illustrated in Fig. 2.

As demonstrated by the data of this Table, the high cor-
relation between the elastic solutions provided by the integral
and differential solution methods carries over directly into the
viscoelastic analysis.

The final item meriting discussion is the length of the time
increment used in each of the formulations. Unlike the prior re-
sults, some differences do exist between the maximum allowable
time step increments for the integral and differential formula-
tions. Additionally, the allowable time step increment for the
integral formulation exhibits a higher dependence on the actual
angle of rotation than does the differential formulation.

In general, a relatively small time step increment must be
used with the integral solution methodology. For example, the
results presented above are hased op the use of a 0.01 time step.
As the length of this time step is increased, the accuracy of the
solution decreases and tends to underpredict the deflection. This
convergence “from below” is not surprising since the convolution
integral is approximated as the sum of a finite number of terms.

In contrast, much larger time step increments can be used
with the differential formulation. This is principally attributed
to the high accuracy provided by the Runge-Kutta integration
routine. Most of the results provided above were developed using
a 0.10 time step. Additionally, the allowable length for this time
step increment tended to be rather insemsitive to the angle of
rotation. The allowable time step for the integral formulation,
on the other hand, exhibited a high level of sensitivity to the
angle of rotation. Larger angles of rotation required significantly
shorter time steps for accurate results to be obtained.

These factors combine in a rather interesting manner with
regard to which method of analysis is computationally more ef-
ficient. Typically, for the analysis of short periods of viscoelas-
tic deformation the integral solution method was two to three
times faster than the differential method. This is attributed to
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Table 6. Integral and Differential Viscoelastic
Solutions for Three Time Constants
P/P. = 0.50, and a/L = 0.05

Transverse Deflection (in)

Exact
siné Angle
s=s'/L Integral a/ot % Diff {deg)
at time = 0.0
0.0 0.000000  0.000000 0.00
0.1 0.008283  0.008285 0.02 0.7Y
0.2 0.033056 0.033044 -0.04 1.57
0.3 0.073940 0.073948 0.01 2.33
0.4 0.130441  0.130516 0.06 3.07
0.5 0.202009  0.201999 0.02 3.76
0.6 0.287513  0.287539 0.02 4.40
0.7 0.385945 0.386070 0.03 5.01
0.8 0.496357  0.496382 0.01 5.52
0.9 0.616919 0.617049 0.02 6.01
1.0 0.746772  0.746670 -0.01 6.28
at time = 1.0
0.0 0.000000  0.000000 0.00
0.1 0.015083  0.015089 0.04 1.44
0.2 0.060151  0.060128 -0.04 2.86
0.3 0.134319  0.134344 0.02 4.22
0.4 0.236430  0.236612 0.08 5.54
0.5 0.365200 0.365193 0.00 6.76
0.6 0.518035 0.518161 0.02 7.86
0.7 0.692634  0.692946 0.03 R.87
0.8 0.886869  0.886967 0.01 9.70
0.9 1.096666 1.097006 0.03 10.44
1.0 1.320154  1.320004 -0.01 10.95
at time = 2.0
0.0 0.000000  0.000000 0.00
0.1 0.019127 0.019138 0.06 1.83
0.2 0.076254  0.076232 -0.03 3.62
0.3 0.170149  0.170202 0.03 5.3
0.4 0.299200 0.299484 0.09 7.00
0.5 0.461621  0.461664 0.01 8.52
0.6 0.653844  0.654093 0.04 9.8%
0.7 0.872716  0.873246 0.06 11.13
0.8 1.115343  1.115622 0.02 12.12
0.9 1.376227 1.376871 0.05 12.99
1.0 1.652861 1.652902 0.60 13.55

(% differences are with respect to integral «olution)
(comparisons based on results from 10 element models)

two factors. The first is the comparitively slow Runge-!\';ma
integration procedure used in the differential formulation. For a
short period of viscoelastic deformation, the calculation of the
convolution integral of the integral formulation. requiring sim-
ple summation of a limited number of terms. can be performed
much more rapidly.

The second factor is that the fixed point iteration scheme
of the integral formulation, although requiring more iterations
than the Newton method, is also performed more rapidly since it
is simply an algebraic operation. The Newton method. in con-
trast, requires inversion of the matrix premultiplying the vec-
tor of trial function corrections and then numerical evaluation

through solution of the system of equations. Even for just 2 10
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eletuent hean. this process js slow in comparison to the fixed

point iteration,

However. as the length of the period of viscoelastic defor-
iation increases. this relative speed relationship reverses. Even-
tually. the differential formulation begins to generate solutions
more rapidiv than the integral method. In the example problem
cescribed ahove. this generally occurred approximately between
the second and third time constants. The reason for this change
i« directlv related to the computation of the convolution inte-
cral of the integral technique. As time increases, the number
of terms in the summation increases linearly. This in turn, in-
creaces the number of additions which must be performed and
therefore linearly increases the time need for each computation.
In contrast. the speed of the Runge-Kutta integration routine is
“virtuallv independent of time. Thus. the continually increasing
computation effort required in the integral technique eventually
axceed~ that need for the differential technique thereby reversing

the pelative speed relationship.

V. Conclusions

Based on the results reported herein and elsewhere {12}
it is concluded that the differential formulation procedure pre-
~nted can he emploved for the analysis of quasistatic nonlinear
one-dimensional viscoelastic problems. This conclusion is based
directiv on the high level of correlation between results devel-
oped nsing this formulation technique to those obtained with
the previously published integral method for solution of such
probiem:. Additionally, it is noted that both of these meth-
ad- exhibit exceptionally similar accuracy characteristics with
regard 1o the number of elements employed in the approxima-
tion. For hoth. a relatively low number of elements can be used

without engendering any significant errors.
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Abstract

The problem of buckling of shallow arches under transient
thermomechanical loads is investigated. The analysis is based on
nonlinear geometric and constitutive relations, and is expressed
in a rate form. The material constitutive equations are capable
of reproducing all non-isothermal. elasto-viscoplastic character-
istics. The <olution scheme is capable of predicting response
which includes pre and posthuckling with creep and plastic ef-
fecis. The solution procedure is demonstrated through several
examples which include hoth ¢reep and snap-through hehavior.

L__Introductijon

Elastic snap-through of low arches under quasi-static loads
has been the subject of several investigations. The significance of
the problem. in so far as it illustrates certain important features
in more complicated buckling problems of plates and shells, was
pointed out by Marguerre (1}, who constructed a simplified me-
chanical model to demonstrate these features. Timoshenko [2]
obtained an approximate solution to the problem of a low arch
under a uniformly distributed load. Biezeno [3] considered the
problem of a low parabolic arch loaded laterally at the mid-point
with a concentrated load. He also investigated snap-through
huckling of a shallow spherical cap, pinned along its circular
houndary. under the action of a concentrated load applied along
the axis of rotational synunetry, He presented his approximate
solutions by means of load-deflection curves and equations from
which the eritical load could be ealculated.

In 1952, Fung and Kaplan [4] investigated the problem of
low pinned arches of various initial shapes and spatial distribu-
tions of the lateral load. Their results show that a very shallow
arch snaps-through synunetrically, whereas a higher arch buck-
les asynumetrically. They also ran a limited number of experi-
mental tests, and their experimental data are in good agreement
with their theoretical results. About the same time. Hofl and
Bruce 5°, in investigating the possibility of snap-through huck-
ling of a low pinned arch with a half-sine-wave initial shape
under a half-sine-wave distributed dynamic Joad (suddenly ap-
plied with infinite duration). obtained results for the quasi-static
load case which are identical to those obtained hy Fung and Ka-
plan for the same problem.

if’rofessot. Associate Fellow AIAA, Member ASME
“Assistant Professor, Member AlAA
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Astronautics, Inc., 1987. All rights reserved.
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In 1962, Gjelsvik and Bodner {6} ohtained an approximate
solution to the problem of a low circular arch with a concen-
trated load at the mid point of the arch and clamped hound-
ary conditions. They also reported on experimental tests, and
there is good agreement hetween their theoretical predictions
and their experimental results. Schrever and Masur |7} obtained
an exact solution to their problem {and for the load case of
uniform pressure). and they showed that for the concentrated
load case.the arch snaps-through symmetrically regardless of
the value of the rise parameter. Masur and Lo 8 presented
a general discussion of the hehavior of the shallow circular arch
regarding buckling, post-buckling and imperfection sensitivitv,
Snapping of low pinned arches resting on an elastic foundation
has heen investigated by Simitses {9]. This system exhibits all
forms of oxperime;\mll_v ohserved buckling phenomena {smooth
and violent ) and of theoretically predicted responses {limit point.
bifurcation with stable hranching and bifurcation with unstable
branching), and it is presented with sufficient detail in Ref. 10.
Experimental results have also been reported by Roorda ;111

The effects of inelastic material hehavior found their wav into
the literature since the 1960°s. Onat and Shu {12} considered the
behavior to be one of rigid-perfectly plastic. Fromciosi. Augusti
and Sparacio [13] discussed the collapse of arches under repeated
loads with inelastic material behavior. Studies of inelastic snap-
through buckling of shallow arches were also reported by Lee
and Murphy [14). In addition Augusti {15] investigated plastic
buckling of a model of a three hinged arch in 1968. and a more
complete analysis of the same model was provided hy Batter-
man {16! in 1971, Finally. the reader who is interested in the
ultimate strength of parabolic steel arches with bracing svstem
is referred to Komatsu [17]. who considers inelastic in-plane and
out-of-plane instabilities and provides design forinla for each

case,

The elastic response of arches under sudden (dynamic} ap-
plication of the external loads has been reported by Hoff and
Bruce (5. Hsu {21]. [22]. and Lock [23]. For a more complete
bibliography see Ref. 24.

Creep buckling of shallow archies has heen investigated hy
Huang and Nachbar [18]. Krajcinovic {19]. and Botros and Bi-
enek |20].

As far as the authors know no work has heen reported on the

non-isothermal elastovisco-plastic behavior of shallow arches.
The purpose of this paper is to demonstrate the effect of highly
nonlinear material hehavior on the snap through and creep buck-
ling of shallow arches.
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{I. Elasto-Thermo-Viscoplastic Constitutive Relations

The prediction of buckling loads and postbuckling hehavior
of structural components. like shallow arches, made of a realistic
metallic material and subjected to non-isothermal thermonie-
chanical loads has increased in importance in recent years.

Under this kind of severe loading conditions, the structural
behavior is highly nonlinear due to the combined action of ge-
ometrical and physical nonlinearities. On one side, finite defor-
mation in a stressed structure introduces nonlinear geometric
effect<. On the other side. physical nonlinearities arise even in
«mall strain regimes, whereby inelastic phenomena play a par-
ticulariv important role. From a theoretical standpoint, nonlin-
ear constitutive equations should be applied only in connection
with nonlinear transformation measures {implying hoth defor-
mation and rotations). However, in almost all of the works in
this area 25. the two identified sources of nonlinearities are
alwavs ~eparated. The separation yields, at one end of the spec-
trum. problems of large response, while at the other end, prob-
Jeme of viscous and:or non-isothermal hehavior in the presence

of small train.

The cla-<ical theories, in which the material response is char-
acterized as a cotubination of distinct elastic, thermal, time inde-
pendent inclastic {plastic) and time dependent inelastic (creep)
defurination camnponents cannot explain some phenomena, that
can he oherrved in complex thermo-mechanical loading histo-
ries. This is particularly true when high-temperature non-
isothermial processes must he taken into account. There is a
c<izeahie hody of literature {25}, {26] on phenomenological consti-
tutive equations for the rate and temperature dependent plastic
deformation hehavior of metallic materials. However. almost all
of these new “unified” theories are based on small strain theo-
ries and several cuffer from some thermodynamic inconsistencies.

lu  previous paper [27). the authors have presented a com-
plete ~i of constitutive relations for nonisothermal, large strain,
elasta viseoplastic hehavior of metals. It was shown there [27]
that the metric tensor in the convected (inaterial) coordinate
«verem can be linearly decomposed into elastic and (visco) plas-
tic parts. So a vield function was assumed, which is dependent
on the rate of change of stress on the metric, on the temperature
and on a <et of internal variables. Moreover, a hypoelastic law
wa- chusen 10 describe the thermo-elastic part of the deforma-
tion.

A time and temperature dependent viscoplasticity model was
forniulated in this convected material system-to account for finite
strains and rotations. The history and temperature dependence
were incorporated through the introduction of internal variables.
The choice of these variables, as well as their evolution, was mo-
tivated by thermodynamic considerations.

The nonizothermal elasto-viscoplastic deformation process
was descrihed comnpletely by "thermodynamic state” equations,
Most investigatars [25], {26] (in the area of viscoplasticity) em-
plov plastic strains as state variables. The authors’ previous

study 27 shows that, in general, use of plastic strains as state

variahle< may lead to inconsistencies with regard to thermody-
namic considerations. Furthermore, the approach and formu-
larion emploved in previous works leads to the condition that
all the plastic work is completely dissipated. This, however,
is ir. contradiction with experimental evidence, from which it

emerges that part of the plastic work 1s used for producing resia-

ual stresses in the lattice, which, when phenomenologically con-
sidered, causes hardening. Both limitations were excluded from
this [27] formulation. Accuracy of the formulation was checked
on a wide range of examples [28).

The constitutive relation will be rephrased here in some dif-
ferent form. For brevity we compile only some notations and
fundamental relations which are used in the formulation of the
intended constitutive low. For details, see [27] and [28).

Concerning the formulation of constitutive laws it is advan-
tageous to use a material (co-tmoving) coordinate system. The
transformation from the underformed state (metric g;;.) to the
deformed state can he represented by the tensor:

o
] ir -1y ir 2
fi=g" g or (f')i=g"9u (1)
The total deformation rate is defined by

O 1 1 . | D
& = - ".r - - '."""____ -1y LAY At B UN 14

W = 59" 9k = = 39ird 2(f Y 1y Yedi (2)
here (') denotes time material derivative. The expression

v. ) . . ..
fi= Ve + duf - i f; = sym{(f)s} (3

represents the synunetric part of ( [ ), or the covariant deriva-
tive with respect to time, also called the convected derivation,
which is due to Zaremba and Jautnann.

The total deformation can he decomposed according to

.0, {ikr
fl'- =gm'gmr Gske =f:-!£ (4)

L]
where the superscript ( ) relates to a fictitious configuration de-
fined by a fictitious reversible process with frozen internal vari-
ables. The decomposition of Eq. (4) leads to an additive de-
composition of the deformation rate
. ) )
di, =d;, + d; (8)

{r) (i)

L is related to the reversible deformnations. whereas d}. denotes
the remaining part of the deformation rate.

For the description of the stress state, we introduce the Kir-
choff stress tensor s}, which is connected with the real Cauchy
stress tensor o}, hy the relation:

si =0l (6)

e

Assuming that the elastic hehavior is not. affected essentially
by inelastic deformations, the following hypaelastic incremental
law was chosen [27]

v

d,= Y t, +{9_If‘i: + aT}é; (7}
with
i :  weighted stress deviator .
G : shear modulus
K : bulk modulus
a : coefficient of thermal expansion

The following constitutive relations were established {27} for
the inelastic behavior.
yield condition:

F=(t - B gh)t - 5 gst) - K(AT) = - 12 >0 (8)
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accompanving equilibrium state:
F=(ih-chgdlif -chgpt) - k(AT =F - =0 (9)

evolution law for inelastic deformations:

m

z\(’,. —Cquj;,) (10)
with
i b "
(/7—cpqdk 1k chl3) -1 (11)
and :
i = 1 - cPgdl)+chad 12
& 174“\(E ¢ Q/A) 99 (12)
evolution laws for the internal variables:
. 1. i)
A=310d f (13)
4
Ay (1)
Bi=Edy (14)
if .
OF % OF ..
F=0 and ais,,+aTT>0 (15)
then
r)
dj =d, , (16)
(') <
=0 and d;= 21\(!1 - tPg’J,,) (17)
with
« SOk,
= AP -
A 8'1l’{ 2Ath - ep gt - 57 T) (18)
if c
! aF i aF N
F=0 and -{r‘;‘-s,,-t-é?TSO (19)
or -
F<0 (20)
then
) {r)
d = d
A =0 (21)
v.
o= 0

Within the developed frame the elasto-viscoplastic hehav-
ior is governed by the scalar material functions c(si.T.A,[JL).
K(AT). g(s}. A, T.3)). €(A.T, 3} ), and n(A, T, 3;). These ma-
terial functions can be determined from a series of monotonic
and cyelic processes with proportional and nonproportional paths
at diffsrent temperature levels {28).

11I. _General Formulation and Solution Schemes

The rate form of the constitutive equations suggests that a
rate approach be taken toward the entire problem so that flow
is viewed as history dependent process rather than an event.
For this purpose, a complete true ah-initio rate theory of kine-
matics and kinetics for continuum and curved thin structures,
without any restriction on the magnitude of the transformation
was presented in Ref. 28. It is implemented with respect to
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a body- fixed system of convected coordinates. and it is valid
for finite strains and finite rotations. The time dependence and
large strain hehavior are incorporated through the introduction
of the time rates of change of the metric and of the curvature.

The constitutive law may be applied to the conservation of
momentum via an appropriate variational principle. The prin-
ciple of virtual power (or of virtual velocities) reads

/nij6z',-.;d"-/ pfié.-,dr-/ﬂin,u =0 (2
v v A

where §v; are the virtual velocities, /7 the hodv forces per unit
mass and vT7 the surface tractions. Total differentiation of Eq.
(22) yields,

ij
/(l—h—- + o' d,, —tkﬂ *i)e, i dV —/ p——h dv
v
J . ; dt v
-/ v 50,d4 +/ cr”(-—’).id!'—/ pr—'-ldr
A v dt di

-/ UTJ‘” 2dq =0 (23

At anv instant. Eq. (23) must be satisfied. The virtual ve-
locity and its time derivative are then independent. Moreover.
the last three terms of Eq. (23) are equivalent 1o Eq. i22).
Hence, the principle of the rate of virtual power may he oh-
tained in its concise form. For further classifications. the total

derivative of the stress components will he represented by the
Jauman derivative, and the following integrals are defined by

v
3 =/ 'l fu;,dV (24)
;
Ii= /‘.(a’-’d: - aidy e,V (25)
I = /‘ whatite dv 126)

Then. substitution in Eq. (23) vields the final form of the prin-
ciple of the rate of virtual power.

i T
I=Lslg+d= [ pSreeav - [omear o

The quasi-linear nature of the principle of the rate of virtual
power suggests the adoption of an incremental approach to nu-
merical integration with respect to time. The availability of the
field formulation provides assurance of the completenesc of the
incremental equations and allows the use of anv convenient pro-
cedure for spatial integration over the domain V. In the precent
instance the choice has heen made in favor of a sitnple first order
expansion in time for the construction of incremental solutions
from the results of finite element spatial integration of the gov-
erning equations.

The procedure employed permits the rates of the field formu-
lation to he interpreted as increments in the numerical solution.
This is particularly convenient for the construction of incremen-
tal boundary condition histories.

The finite element method for spatial discretization has< heen
well documented (see. e.g. Zienkiewicz {29; or Oden (30 ) and
will not be detailed here. Restricting attention 1o a single finite
element B,,, the velocity field is approximated bv #,(r/}.

vied) ~ w@l) = (P2 ad= 10N 28
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In Lo 10250 V' are generalized nodal velocities. re? js depen-
dent npon the precent nodal coordinates. v''(r’) is a vector of
prescribed functions of (27). and N is the number of degrees of
fracdom associated with the element. The matrix I'* is defined
v reguiring that evaluation of & at nodal positions vields 14,

The algebraic counterpart of Eq. (27) after the finite element
diserotization is the well-known stiffness expression

'K'{V} = {P} - {F} (29)

with the tangent <tiffness matrix 'K}, the vector of the incre-
mental velacities {17}, and the vector out-of-halance force rates,
external force rates { P} minus internal force rates {F}. The ho-
mogenois case of Eq. (29) indicates either the non-uniqueness
of the equilibeium path at a stable or unstable hifurcation point
ar the unigie hut unstable situation at a limit point. Hence this
eriterion mav he evaluated by a determinant check or supple-
mentary eicenvalue analysis for the load parameter parallel to

the Jaading process,

F-en under the condition of static external loads and-slowly
growing creep offects, the presence of snap-through buckling
ituishes the inertia effects significant. In dvnamic analyses, the
applied bodv forces include inertia forces. Assuming that the
ma~+ of the hodv considered is preserved, the mass matrix can
he evaluated prior to the time integration using the initial con-

touration.

Finite eiement <olution of any boundary-value problem in-
rolves the «olution of the equilibrium equation (global) together
with the constitutive equation {local). Both equations are solved
simultanecuasiv in a step by step manner. The incremental form
of the global and local equations can he achieved by taking the
integration over the incremental time step At = ¢;4y ~ 1. The
rectanaular rule has been applied to execute the resulting time

mtegration,

Cleatlv, the numerical solution involves iteration. A simpli-
el version 21 of Riks Wempner constant-arc-length method
La< been utilized. This iteration procedure which is a general-
ization of the displacement control method also allows to trace
the nenlinear response hevond bifurcation points. In contrast
' the conventional Newton-Raphson techniques, the iteration
of the method takes place in the velocity and load rate space,
ihe dvad <tep of the first solution in each increment is limited
t contralling the length ds of the tangent. Either the length is
koDt constant in each step or it is adapted to the characteristics
of the solution, In each step the triangular-sized stiffness matrix
Has to he checked for negative diagonal terms, indicating that a
critical point is reached.

IV. Shallow Circular (lamped Arch

The theory and computational procedures described in the
preceding ections have been applied to the creep buckling anal-
veis of & shallow circular clamped arch. The problem of the
ciamped arch he<ide being of some practical interest contains a
musudwr of similarities to that of the uniformly loaded spherical
eaji. The trend of results of the arch problem serves as a good
mdicator 10 the Lehavior of the latter.
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The shallow circular clamped arch subjected to a single cen-
tral concentrated load. as shown in Fig. 1, is analvzed. The
material chosen for the numerical experimentation is the car-
bon steel (-45 (DIN 1720) with E = 107 psi, » = 0.3 and
o, = 2.7 x 10* psi at room temperature. The viscoplastic prop-
erties (the scalar material functions) were ohtained in Ref. 28.

L

Bz T.3397°
Rz 133.2"

I
3/,‘ i~ -

A

Fig. 1 Clamped Circular Arch

The analysis is performed with the aid of 24 paralinear iso-
parametric elements, Fig. 2. The paralinear isoparametric el-
ement is intended for the analysis of oriented structures where
the geometry is such that the thickness is small compared to
other dimensions. The characteristics of the element are defined
hy the geometry and interpolation functions, which are linear
in the thickness direction and parabolic in the longitudinal di-
rection {see Fig. 2). Consequently, the element allows for shear
strain energy since normals to a mid surface hefore deformation

remain straight, but not necessarily normal to the mid surface
after deformation.

’

Nooe Ni
a6 Corner
Mes Wi JE wst.mz2t | Y (BaeED 1ol
Midside

Ei=0, =2t

Yat1-ES0 ema

Fig. 2 Paralinear Isoparametric Element

The elastic lbehavior, corresponding to both axisymetric and
asymetric response, is shown on Fig 3. These curves are in
complete agreement with those produced by- Gjelsvik and Bod-
ner (6], only hecause the young's modulus and Poisson’s ratio

values used are virtually the same (carbon steel C-45 here, and
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2024-T4 aluminum alloy in Ref. 6 ). Note that these elastic
response curves are hypothetical for our material hut true for
the 2024-T4 alloy. The true hehavior for our material is elasto-

- viscoplastic and it is labeled as such on Fig. 3. Note that this

curve represents quasi-static (steady state) elastovisco- plastic
response, as described by the chosen constitutive law. According
to this, snapping accurs at a load of 26.20 lbs, primarily because
of the low yield strength. Then, the post-limit point behavior
seems to he primarily driven hy viscoplastic hehavior.

P Srem
’ Y
’
’ s ‘
- — L . s
PR \ ]
‘ N ’
AY ]
\\\ s
-
N ’
M R : /
06 p > L4 /K
\ \\ \5 P
. . < -’
=== - -| purely elashi
[ dashe- viser st

[ §
Fig. 3 The Arch Response

It is expected here that if loads up to approximately 14 lhs
are reached quasi-statically and left applied for a long time the
primary response will he creep and the critical time to creep
will he extremely large. On the other hand, for loads hetween
14 Ihs and 26.2 Ibs ( especially for the higher range } the hehav-
ior will he a comhination of creep and snap-through buckling.
This is best demonstrated by the curve on Fig. 4. The applied
load is reached quasi-statically in 13 minutes and then it is kept
constant. The curve of Fig. 4 depicts the hehavior of the arch
in terms of midpoint deflection versus time. Creep, initially, is
very slow. then snap-through takes place in 32 minutes, curve
BC. and then the creep behavior continues until a critical time
to creep (creep huckling occurs) is reached after a total time
of 97 minutes. Note that for this loading condition the critical
time to creep is 97 minutes. Creep buckling and critical time to
creep are hased on the phenouienon that the deflection increased
very rapidly. For loads higher than 26.2 Ibs, it is expected that
snapping will occur early, during quasi- static loading and then
the creep behavior will be similar to that shown on Fig 4, past
point ¢.

The next example considers the influence of eyclic loading on
the response. Figure 5 illustrates the load deflection hehavior
of the arch under a cyclically applied external load. The load
is increased. quasi-statically, from zero to 26 Ibs in 5 minutes,
then it is held constant for 2.5 minutes, after that it is reduced
to 20 Ihs and held constant for 50 minutes, then raised to 25.5
Ibs for 2.5 minutes and finally it is reduced back to 20 Ibs and
held constant.
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Fig. 5 Multi-Cycle Arch Response

The steady state response under this type of loading exhibits
several limit points, which may imply that snapping is irnni-
nent shortly after the load reaches the value of 26 ths (between
points A and B on Fig 5). The dashed curve corresponds to
the hypothetical elastic static response and it is only shown for
comparison purposes.

The last example presented in Fig 6. consider the inﬂt.xence
of temperature on the arch hehavior. The Joading history .15 the
same on the one shown on Fig. 4. The curve corresponding to

T = 50°F was discussed previously {Fig. 4), and it is used here
as a basis for comparison. When the temperature is raised to
200°F (after this, the loading is applied), the time to snap is
reduced to 26 minutes, while the critical time to creep is not
appreciable affected. On the other hand at the highest tempera-
ture T = 1000°F, for which results are shown. The critical time
to creep is reduced to 62 minutes. and the steady state response
does not show a clear snap-through behavior.
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The Influence of Temperature Raise

Vv iscussio

A~ noted earlier. the main thrust of this work has heen to .
veinonistrate the effect of highly nonlinear material behavior on
the snap through and creep buckling of shallow arches. It is ev-
ident that in the presence of both elastic and viscoplastic defor-
tation the process of buckling assuties an entirely new charac-
ter. Buckling develops as a time-temperature dependent defor-
wation process wder constant or variable loads of magnitndes
stuadier than the elastic critical values, In arches under loads

Lelow the eritical values the structure initially deforin quasi-
<taticallv with the thermo-viscous terms manifesting themselves
in the fortn of increasing displacement under. sav a constant
When the maguitude of the displacements reaches a cer-
tain threshold <tate, the arch snaps dvnamically into the post-
bekling confizuration and then continues quasi-static deforma-
Tieodl AN,

i .&\'l.

The naterial constitutive relation has been proven to he ca-
pabie of reproducing the main characteristies of viscoplastic de-
The modified Riks; Wempner iteration scheme has
heen found to be a versatile technique in the pre-and post criti-
cal ranue,

fortuations.

The influence of thermo-mechanical coupling can hecome
verv large in stability problems. Such processes are always
connected with a rapid growth of inhomogeneity of the state,
Thorough investigation of such prohlems, however, must he per-
formed with the necessary detail.
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